Efficient root-finding algorithm with application to list decoding of Algebraic-Geometric codes
نویسندگان
چکیده
A list decoding for an error-correcting code is a decoding algorithm that generates a list of codewords within a Hamming distance from the received vector, where can be greater than the error-correction bound. In [18], a list-decoding procedure for Reed–Solomon codes [19] was generalized to algebraic–geometric codes. A recent work [8] gives improved list decodings for Reed–Solomon codes and algebraic-geometric codes that work for all rates and have many applications. However, these list-decoding algorithms are rather complicated. In [17], Roth and Ruckenstein proposed an efficient implementation of the list decoding of Reed–Solomon codes. In this correspondence, extending Roth and Ruckenstein’s fast algorithm for finding roots of univariate polynomials over polynomial rings, i.e., the Reconstruct Algorithm, we will present an efficient algorithm for finding the roots of univariate polynomials over function fields. Based on the extended algorithm, we give an efficient list-decoding algorithm for algebraic-geometric codes.
منابع مشابه
On Representations of Algebraic-Geometric Codes for List Decoding
We show that all algebraic-geometric codes possess a succinct representation that allows for the list decoding algorithms of [15, 7] to run in polynomial time. We do this by presenting a root-finding algorithm for univariate polynomials over function fields when their coefficients lie in finite-dimensional linear spaces, and proving that there is a polynomial size representation given which the...
متن کاملOn Representations of Algebraic-Geometric Codes
We show that all algebraic-geometric codes possess a succinct representation that allows for the list decoding algorithms of [9, 6] to run in polynomial time. We do this by presenting a root-finding algorithm for univariate polynomials over function fields when their coefficients lie in finite-dimensional linear spaces, and proving that there is a polynomial size representation given which the ...
متن کاملIdeal forms of Coppersmith's theorem and Guruswami-Sudan list decoding
We develop a framework for solving polynomial equations with size constraints on solutions. We obtain our results by showing how to apply a technique of Coppersmith for finding small solutions of polynomial equations modulo integers to analogous problems over polynomial rings, number fields, and function fields. This gives us a unified view of several problems arising naturally in cryptography,...
متن کاملA Displacement Structure Approach to List Decoding of Reed-Solomon and Algebraic-Geometric Codes∗
Using the method of displacement we shall develop a unified framework for derivation of efficient list decoding algorithms for algebraic-geometric codes. We will demonstrate our method by accelerating Sudan’s list decoding algorithm for Reed-Solomon codes [22], its generalization to algebraicgeometric codes by Shokrollahi and Wasserman [21], and the recent improvement of Guruswami and Sudan [8]...
متن کاملOn representations of algebraic-geometry codes
We show that all algebraic-geometric codes possess a succinct representation that allows for the list decoding algorithms of 9, 6] to run in polynomial time. We do this by presenting a root-nding algorithm for univariate polynomials over function elds when their coeecients lie in nite-dimensional linear spaces, and proving that there is a polynomial size representation given which the root ndin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 47 شماره
صفحات -
تاریخ انتشار 2001